
Journal of Statistical Physics, Vol. 24, No. 1, 1981 
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The Bobylev approach to the nonlinear Boltzmann equation is reviewed. The 
linearized problem is discussed and it is shown that eigenfunctions decaying like 
a negative power of the velocity are possible with Maxwell molecules only. The 
relaxation to equilibrium according to the nonlinear equation is discussed and 
the Krook-Wu conjecture on the status of the BKW mode is shown to be false 
in general. The buildup of the high-energy tails is considered and a phenomenon 
observed by Tjon is given a simple explanation. Finally, the method is illustrated 
with numerical calculations performed for two sets of initial conditions. 
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1. INTRODUCTION 

During the last two decades significant progress has been made in our 
understanding of higher density effects in kinetic theory. The great collec- 
tive effort at unravelling the mysteries beyond the Boltzmann equation 
might leave the impression that the properties of the Boltzmann equation 
itself have been completely clarified. This, however, is not quite the case. 

It is true, of course, that we know a great deal about the Boltzmann 
equation, and that the body of knowledge is growing. Our knowledge is, 
nevertheless, limited, and, in particular, exact solutions are rare indeed. It 
was therefore a remarkable coincidence when, in 1976, Bobylev (~) and, 
independently, Krook and Wu (2) published an exact solution (the BKW 
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mode) of the nonlinear Boltzmann equation for a spatially uniform gas of 
Maxwell molecules with an isotropic velocity distribution. The discovery of 
this exact solution has on the one hand triggered a search for similar 
models for which exact solutions can be found (3-5~ (for a review, see 
Ernst(6)), while, on the other hand, several authors have investigated, 
numerically (7'8) and analytically, (9'1~ the status of the BKW mode and the 
related problem of the buildup of the high-energy tails in the equilibrium 
distribution. 

In this paper we shall review and advocate the Bobylev method (1) as, 
in our opinion, the most effective realization of the simplifications inherent 
in models with a velocity-independent collision frequency. We restrict 
ourselves to the classical case of Maxwell molecules in three dimensions 
(repulsive interaction potential proportional to the inverse fourth power of 
intermolecular distance). We shall mainly use the method to examine the 
status of the BKW mode and to study the problem of the high-energy tails. 

Bobylev's basic trick is a Fourier transformation in velocity space of 
the nonlinear Boltzmann equation. With Maxwell molecules this leads to a 
considerable simplification of the equation. We recall Bobylev's derivation 
in Section 2. 

In Section 3 we again follow Bobylev, who rederived the standard 
solution of the linearized equation and, in addition, found an infinite class 
of eigenfunctions that decay asymptotically like a negative power of the 
velocity. In the Appendix we show that such eigenfunctions are only 
possible with Maxwell molecules. Nevertheless, velocity distributions of this 
kind are perfectly acceptable from a physical point of view. 

The derivation of a recursion scheme defining the Bobylev class of 
similarity Solutions characterized by a single relaxation rate is given in 
Section 4. The BKW mode is a member of this class. A generalization to 
classes characterized by a finite number of relaxation rates is indicated. 

The general solution of the nonlinear" initial value problem was given 
recursively by Ernst, (11'12) who showed that his recursion scheme is closely 
related to Maxwell's moment equations. As we shall need it in later 
sections, we present the general recursion scheme in Section 5. 

A problem of special interest has been the status of the BKW mode. 
Krook and Wu (1) conjectured it to be a crucial one in that an arbitrary 
initial state will relax to equilibrium via the BKW mode. This conjecture is 
shown (10) to be essentially false in Section 6. 

The second problem on which much interest has been focused is that 
of the high-energy tails. The tail of the BKW mode approaches the 
equilibrium Maxwellian from below. Tjon, (8) however, observed that for 
certain initial states there is a crossover to overpopulated tails that decay to 
equilibrium from above. This phenomenon is explained (~~ in Section 7. 
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Finally, the general recursion scheme is solved to eighth order for two 
types of initial conditions in Section 8, where also the rate of convergence 
of this procedure is discussed. 

. THE BOBYLEV TRANSFORMATION 

In this section we summarize the Bobylev transformation. r The 

where 

giving 

0w 02w 
0--7 + i Ok. 8~ - S(rp, 9)) (5) 

S(cp, ep) = f dv dw dfl [ e x p ( - / k -  v)] g~(~ . R)U 1-4/s 

• [ f(w')f(v') - f(w)f(v) ] (6) 

The collision term S(rp, q0) is clearly invariant under the operation (v, w)-~ 
(v',w'). But so are the following quantities separately: u, ~.  R, dv dw dR. 
The first term in (6) can then be transformed such that the f ' s  depend on 

Boltzmann equation for the one-particle distribution f(r, v, t) reads 

+,. 

(1) 
= f d w  d~ 0(~. ~; u) u[ f(w')f(v') - f(w)f(v) ] 

Here a(d .  fi; u) is the differential cross section for the collision process 
(v,w)--> (v',w'), u - - w - v  is the relative velocity (with magnitude u = lu]) 
before the collision, and d and ~ are the unit vectors in the direction of u 
and u', respectively. Since energy and momentum conservation give u' = u 
and v' + w' -- v + w, one has 

v ' = � 8 9  "" w ' =  un, ~ (v + w) + �89 u~ (2) 

With repulsive power-law potentials U(r)= cons t - r  -s, the depen- 
dence of the differential cross section on u can be determined explic- 
itly, (13J4) and one has 

ofa. ~; u)u = gs(~ R) .1-4/" (3) 
For Maxwell molecules (s = 4) the dependence on u cancels. Hard spheres 
correspond to s--) oo. 

We now follow Bobylev and introduce a Fourier transformation in 
velocity space 

cp(r,k,t) = f d v  [ e x p ( - i k .  v)If(r ,  v,t) (4) 
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unprimed velocities, and using (2), one finds 

S(%~p)=fdvdw f ( v ) f ( w ) ( -  exp[ �89 (v + w)]}u~-4/SF(u,k) (7) 

with 

F(u, k) = fdf i  gs(d. fl)[ exP(�89 ik .  flu) - exp( �89 ik- u) ] 

Since F is a scalar, it can at most be a function of the scalars u .  k, k .  k, 
and u .  u. Inspection of its explicit form shows that F depends on u .  k and 
the combination uk only. Thus F ( u , k ) =  F(k, u). Changing the order of 
integrations, one can then write 

S(q0, q~) = f dR g, (!~ �9 fi) f dv dw f(v) f(w)u 1-4/s 

• {exp[ - �89 (k + fi)k]exp[ - �89 (k- fi)k] - exp(- ik. v)) 

(8) 
For s =~ 4 this form does not represent a major simplification, although it 
can, as we shall see, be useful for certain purposes. With s = 4, however, the 
integrations over velocities decouple, and one arrives at the equation 

8r 82r . ^ . r , k " k (!~ - fi)) - q~(k)q~(O)] 8-7 * i 8k" 8~ -fdll g4(k" n)[ q0t-~(k -1-ll))(~( 
(9) 

This is the Bobylev form of the Boltzmann equation for Maxwell 
molecules. It represents a drastic simplification of the equation. Previously 
known results can be rederived in a very simple manner, and important 
steps forward can be taken. 

We shall simplify matters further by restricting ourselves to the case of 
a spatially uniform system with an isotropic velocity distribution. In that 
case rp is a function of k2/2 = x and t only, i.e., ~(k,r , t )  =fp(x , t ) .  For 
simplicity we drop the bar on ~ and the subscript s = 4 on g4(k. ll). 4 Then 
Eq. (9) reduces to 

0~(x,  t) 
- ) - (I0) 

8t 
In (10), the notation !~- fi =/~ and x• = �89 ___/x) has been introduced, 
and the integration over the azimuthal angle performed. 

3. THE LINEARIZED EQUATION 

For convenience we shall choose units such that the equilibrium 
distribution is of the form feq(V)---(2~r)-3/2exp(-vZ/2), i.e., @2> = 3. In 

4 We shall not need the explicit form of the somewhat complicated function g(~t) in this paper. 
For details, see, e.g., Ref. 19. 
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the Fourier variable x = �89 k 2 the equilibrium distribution then reads ~eq(X) 
= e -  x. We write 

~(x,t) = e-X[1 + h(x,t)] (11) 

Since x+ + x -- x, the factor e -x cancels when (11) is inserted into (10). 
Linearization in the deviation h from equilibrium then yields 

Oh(x,O 
3t -2~rf_ldt~g( l~)[h(x+, t )+h(x  , t ) - h ( x , t ) - h ( O , t ) ]  (12) 

The corresponding eigenvalue problem follows when one writes h (x, t) 
= h(x) e x p ( -  At): 

Ah(x) = 2~f l ld~ g(~)[h(x)  + h(0) - h(x+) - h(x )] (13) 

Clearly h 0 = 1 and h I = x are eigenfunctions with zero eigenvalue, reflect- 
ing conservation of particle number and energy, respectively. But also all 
other eigenfunctions and eigenvalues are immediately found! They are 
(p ~ O) 

Fourier transformation of the eigenfunctions gives, when one writes f (v)  
= feq(V) + 6f(v), 

1 f d k [ e x p ( i k . v - ~ k 2 ~ ] [ k 2 f  8fAY)- (2~)~ ~ ,J~ 2 j 

_ 1 V 2 3 ; _ ~ )  (15) 
/ 

where 1Fl is the confluent hypergeometric function. (15) For p = n = integer 
it reduces to 

n!F(3/2)  L(,/2 ) v2 
3 ; @ ) _  F ( n +  I F l ( - n ;  2 3 /2)  ( -2 - )  (16) 

where L(~ 1/2) is the associated Laguerre polynomial. (ls) Thus 

6fn (v) = feq(V)n ! L (1/2) (v2/2)  (17) 

The eigenfunctions (t7) and the corresponding eigenvalues (14) were 
first found by Wang Chang and Uhlenbeck. (I6) However, as Bobylev 
pointed out, these are not the only ones. There is nothing preventing us 
from choosing a nonintegerp in (14) (in fact, p could even be complex). For 
noninteger real p the large-v asymptotic behavior of 6fp(v) is (~5~ 

1 I ' ( p  + 3 / 2 )  - - ~fP(V)v~>, (277)3/2 F(--p) (~'~) P 3/2 (18) 
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The only physical requirement restricting p is the existence of energy, which 
dictates tha tp  > 1 (or, more generally, R e p  > 1). 

At first sight the continuum of possible values for p seems to contra- 
dict the usual notion of a discrete spectrum with the corresponding 
Laguerre functions as a complete set. The contradiction is only apparent, 
however, since completeness here refers to a Hilbert space which makes the 
usual linearized Boltzmann operator self-adjoint, and in which the norm is 
defined by (14) 

lSf(v)] 2 
llS/ll 2 = f d v  (19) Lq(V) 

Clearly all eigenfunctions with noninteger p, i.e., with asymptotics given by 
(18), live outside this Hilbert space. 

A natural question is then: do eigenfunctions of this kind exist for 
interaction potentials different from that of Maxwell molecules? We show 
in the Appendix that the answer is no: when the Boltzmann collision 
operator, appropriately linearized, acts on a function with asymptotic decay 
...~v -2e-3, the result is a function decaying like v to the power [ -  
2(p _ l  + 2 I s ) -  3]. As a consequence, eigenfunctions decaying like a 
power of v are only possible for s = 4, i.e., for Maxwell molecules. 

How an initial state with asymptotics v-2e-3 decays to equilibrium 
with, say, hard-sphere interactions seems to be an open problem. 

In this connection one should note that although the above problem is 
mathematically well defined in the context of the linearized equation, it is 
not clear that linearization is meaningful with such states. 

4. THE BKW MODE. 

We return to the nonlinear Boltzmann equation for Maxwell molecules 
in the form (10). This equation has the following invariance properties, 
which are easily verified: (i) If q~(x, t) is a solution, then eaX~o(x, t) is also a 
solution. [The constant a is arbitrary except for conditions resulting from 
existence and positivity off(v,  t).] (ii) If q~(x, t) is a solution, then ~(ax ,  t) is 
also a solution. 

Let us define qJ(x, t) by 

t) = e-X (x, t) (20) 

By property (i), + obeys Eq. (10). Choose the normalization of q0 as 
~(0, t ) =  1. Then qJ(x, t) has to fulfill the conditions: (a) ~(0, t ) =  1 (nor- 
malization); (b) limx_,O[+(x, t) - 1] /x  = 0 (the energy is fixed by e-X); (c) 
~(x; t -~ m) = 1 (approach to equilibrium). These conditions and the invari- 
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ance property (ii) motivate a search for solutions of the type s 

+(x,  t) = ~(X e-at )  (21) 

where ~ is a relaxation rate. 
As observed by Bobylev, insertion of (21) into (10) for t = 0 shows that 

initial conditions leading to solutions of the form (21) must obey the 
equation 

- Xx+,(x  = 2 fjff, ) - (22) 

This equation determines a whole class (the Bobylev class) of solutions. A 
member of this class is characterized by a decay to equilibrium according 
to a single decay rate, as shown in (21). Assume that the behavior of ~ for 
small x is given by 

+ A x )  = 1 + c xP + (23) 
Here p does not have to be an integer, but is restricted to p > 1 by 
condition (b). Insertion of (23) into (22) shows that the corresponding 
relaxation rate is 

k e = A e / p  (24) 
where A s is the eigenvalue of the linearized equation given by (14). 
Insistence that (22) should be obeyed to every order in x uniquely deter- 
mines the higher coefficients in terms of c o (except for an arbitrariness due 
to the "accidental" degeneracy )~2 = 2~3). 

We note in passing that this approach is easily generalized. The next 
class of exact solutions of the nonlinear equation has the form 
= +(xe-X~t, xe -~ t ) ,  where ~(xa,xb) - 1 is given as a double power series 
with positive powers (larger than 1) only. This class is thus characterized by 
two relaxation rates ~a and )~b" The steps analogous to (22)-(24) lead to a 
(somewhat complicated) recurrence scheme which uniquely determines the 
relaxation rates and the solution, modulo (in general) two arbitrary con- 
stants. Generalization to exact solutions with any finite number of relax- 
ation rates is straightforward, but tedious. 

Even the exact solutions in the Bobylev class must be determined 
recursively, and the coefficients of the terms beyond cp depend, in general, 
on an infinite sequence of/~-integrals. However,  one particular member of 
the Bobylev class can be written down explicitly. One verifies by insertion 
that 

~BKw(x) = ebX(1 -- bx) (25) 

does indeed solve (22) with )~ = )l 2 = J A It is remarkable that this solution 2" 

was found (all these years after Maxwell and Boltzmann!) at essentially the 

5 F o r  a deepe r  mo t iva t i on ,  see Ref.  1. 
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same time, and independently, by Bobylev and by Krook and Wu (using a 
different method). We accordingly call the solution (25) the BKW mode. 

In expanded form the BKW mode reads 

- - i b e x  4 . . . .  ( 2 6 )  ~bBKw(X ) = 1 - 1 2~2 l ~.3~3 

According to (21), the time dependence is incorporated when one writes 

b = bo e-x2t= bo e-A2t/2 (27) 

Fourier transformation of (25) yields the BKW mode in velocity space. 
With R(v, t) = f(v, t)/f~q(V) one finds 

exp[ -bv2 /2 (1 -b ) l  I 3b be 2 l (28) 
R•Kw(v,t ) = - ~  b-~-Tz- 1 2(1 - b) + 2(1--- b) 2 

Roughly speaking, the BKW mode is a Maxwellian with too low a 
temperature, dressed with a first-order polynomial in v 2 so that the energy 
is kept at the prescribed value of i 2 3. ~(v  ) = The requirement of a nonne- 
gative-definite f for all t restricts b 0 to the interval 0 < b 0 < 2. 

5. THE GENERAL SOLUTION 

The general solution of the nonlinear equation 

a4,(x,t) 
~t -2~f~_ld~g(~)[+(x+)q4x-)-+(x)] (29) 

can be constructed recursively, as shown by Ernst. (11) For simplicity we 
restrict ourselves to the conventional Hilbert space, i.e., to functions ~(x, t) 
that can be expanded in a Taylor series in x: 

~(x,t) = 1 + ~ c,(t)x" (30) 
n = 2  

With the requirement that (29) should be fulfilled to every order in x, 
insertion of (30) yields tl~e following infinite set of equations for the 
coefficients c,(t): 

dc,(t) 
+ Ancn(t ) = 

n - 2  

2 Cn-m(t)Cm(t) 
m = 2  

~ 2"ff fl_ld~ ~( lg)( ~ - ~  )n-m ( ~--~- ) m (31) 

The integrals on the right-hand side can be expressed as linear combina- 
tions of eigenvalues. We shall come back to this in Section 8. Note that the 
two first equations (n = 2 , 3 )  in the recursion scheme (31) are linear. 
Nonlinear corrections appear for n >/4. 

For the arguments of the next section we shall need the general 
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solution of the first three equations, which are readily found to be  

c2(t ) = c2(O)e- A2t 

c3(t ) = c3(O)e-&t= c3(O)e -3&'/2 (32) 

1 t,2(13~.9-2A2 t C4(/) = -- ~ 2 k v l ~ .  "4- [Ca(0 ) 4- � 8 9  

The fact that A 3 = 3A 2 is easily verified from the definition (14). One can 
also prove that A 4 < 2A 2. Numerically, Alterman et aL (17) found that 
A 4 / � 8 9  A 2 = 3.6844 . . . .  

Having determined the time dependence of the coefficients G(t), one 
can use (17) and return to v space: 

R ( v , t )  f ( v , t )  _ 1 dr 2 dn( t )  lel! t(1/2) T 
feq(v) n=2 

. 

(33) 

THE K R O O K - W U  CONJECTURE 

Krook and Wu conjectured that the B K W  mode  has a special status 
among all states relaxing toward equilibrium. Their conjecture reads(2): 
"An arbitrary initial state tends first to relax towards a state characterized 
by the similarity solution [the BKW mode]. The subsequent stage of 
relaxation is essentially represented by the similarity solution with appropri- 
ate phase." 

In order to test the validity of this conjecture, Tjon and Wu (7) solved 
the nonlinear Boltzmann equation numerically for a set of initial condi- 
tions. Their results seemed to lend support to the conjecture. Later, how- 
ever, Tjon (8) found initial states that seemed to contradict it. 

We shall now show, (l~ by three classes of counterexamples, that the 
Krook-Wu conjecture is false. The phenomenon observed by Tjon will be 
discussed in Section 7. 

Class I. Let +p(xe -~t) be an exact solution of the nonlinear equation 
in the Bobylev class discussed in Section 4. Let 1 < p < 2. From (14) and 
(24) it is easily seen that Xp decreases monotonically when p decreases from 
2 to 1. As p approaches 1 from above, X e ~ const �9 (p - 1), i.e., X e ~ 0. The 
fact that solutions with arbitrarily small relaxation rates exist contradicts 
the Krook-Wu conjecture, since the BKW mode relaxes at the finite rate 
given by )t 2 = �89 A2. 

The states in the Bobylev class with 1 < p < 2 are, however, rather 
special, even if they are perfectly acceptable physically, as discussed in 
Section 3. We therefore turn to states for which a Taylor expansion in x 
exists. 

Class H. Let the initial state be of the form 

@(X) = I~BKw(X ) 4- r x3  -I t- r162 x 4  A,:. . . . (34) 

By Eqs. (26) and (27) this implies that the parameter b o is adjusted so that 
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e2(0) = - ' 2 b 0. This is clearly possible if c2(0 ) < 0. The deviations 3% and 
3e 4 are, from (26) 

= ~ 3 ( 3 5 )  ~C 3 C3(0 ) + xb0 

1 4 _ _  8e 4 = c4(0 ) + ~-b o - c4(0 ) + �89 c2(0) 

Appealing to the general solution (32), one finds that the ~c 3 term decays at 
precisely the same rate as the corresponding term in the BKW mode, 
namely e -312t/2. The 8c 4 term, however, decays like e -A4t, which is slower 
than the corresponding BKW term, decaying like e-2A2t. 

A similar situation prevails in higher orders. The x" term will decay 
with a spectrum of relaxation rates. The fastest one, nA2/2, is that of the 
corresponding BKW term, whereas the slowest is A,, the linear relaxation 
rate. An arbitrary initial state of class II will therefore not approach the 
BKW mode term by term. 

However, states of class II do relax toward equilibrium via the BKW 
mode in the following trivial sense: The slowest term is clearly x 2, decaying 
like e-AC This term belongs to the BKW mode. 

Any state with negative e2(0 ) can be written in the form (34). Positivity 
of f(v, t) implies tha t  ( (v  2 - (t)2)) 2) /~ 0. As a consequence, c2(0 ) >/ - �89 
Comparison with (26) and (28) shows that positivity of the corresponding 
BKW mode amounts to the more stringent condition c2(0 ) = 1 2 - ~ b  0 >/ - 
2/25. When - 5  < 25c2(0 ) < - 2 ,  the corresponding BKW mode fBKw will 
therefore only be positive after a certain time has elapsed. 

Class IH. States of class II were restricted by the requirement - � 89  
< c2(0 ) < 0. There is no physical argument, however, that restricts c2(0 ) to 
negative values in general. As we shall see in Section 7, perfectly reasonable 
initial states have c2(0 ) > 0. Clearly these states do not relax to equilibrium 
via the BKW mode. 

These three classes of counterexamples show that the Krook-Wu 
conjecture is false in general. The only case where it contains an element of 
truth is that of class II, as discussed above. 

7. THE TJON PHENOMENON 

A problem of central interest in the context of the nonlinear Boltz- 
mann equation is that of the buildup of the high-energy tails in the 
Maxwellian from initial states where particles of high energy are rare or 
absent. The BKW mode represents such a state and the approach to the 
equilibrium form of the high-energy tail can be read off from (28). Clearly 
RBK w <  1 for v2>>l and 0 < b < < l ,  i.e., the high-energy tails are ap- 
proached from below. The approach is nonuniform, and the characteristic 
time to reach equilibrium increases essentially logarithmically with energy. 

Tjon (8) solved numerically the nonlinear Boltzmann equation for a 
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Maxwell-like model in two dimensions, with initial conditions of the type 
(in discretized version) 

f ( v , O )  = c~3(v  2 - a)  + c~8(v  2 - r )  (36) 

Normalization and the requirement @2) = 3 uniquely determine c~ and c B. 
Positivity of f restricts the energies �89 a, • fl to be on either side of the mean, 
3. When the high-energy peak (at �89 is located at moderate energies, 
Tjon found that the equilibrium distribution is approached from below, in 
accordance with the behavior of the BKW mode. For larger/3, however, a 
crossover was observed to overpopulated high-energy tails that decayed to 
the equilibrium distribution from above. As we shall see, this phenomenon 
has a simple explanation. 

We first discuss the approach to equilibrium of the high-energy tails of 
states in the Bobylev class. For simplicity, we restrict the discussion to the 
subclass with x 2 as the leading term (it contains, but is not exhausted by, 
the BKW mode). From (21) and (24) the time dependence of the coeffi- 
cients in (33) is then cn(t ) = Cn(O)e -nA2t/2. For high energies, e = �89 v2>> 1, it 

is tempting to replace the Laguerre polynomials in (33) by their leading 
terms, n!L(~ l /2 ) (E)~(  - c) ~. It is easy to see that this is indeed consistent, 
provided that e-A2t/2<< 1. In that case (33) reduces to 

OG 

R ( r  1 + ~ c~(O)(- e e - ' )  ~ 
n = 2  

= ~b( - ~ e - ~ )  ( 3 7 )  

where we have introduced the dimensionless time r = �89 Thus the 
asymptotics behavior, in the sense c >> 1, e -"  << 1, ee-"  = finite, for states in 
the Bobylev class is simply discussed: calculate the Fourier transform of the 
initial state and replace the argument x by - c e - L  [Check: in (28), let 
b ~ 0 with bv 2 = finite. The result equals (25) with appropriate change of 
variables.] 

In the Bobylev class discussed above the nth term decays like e - "  
For a general initial state this is no longer true. The decay rates for the 
various parts of the x"  term range in general from nA2/2 to A,. With 
Maxwell molecules in three-dimensions the asymptotic growth of the linear 
eigenvalues is known to be A ~ n  1/4, i.e., considerably slower than linear in 
n. The result is that a general statement like (37), uniformly valid for all 
initial states in the region E >> 1, e - "  << 1, ee -~ = finite, cannot be made. 

It is still true, however, that the two slowest terms in (37) remain the 
slowest ones for arbitrary initial states. After a "sufficiently" long time, 
therefore, and for E >> 1, one can write, in general, 

R(,,~-) = 1 + c2(0)e2e - 2 ~ -  c3(0)e3e-3~ + - . -  (38) 

What "sufficiently" means here will be investigated in the context of 
specific initial conditions in the next section. 
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The asymptotic result (38) explains the origin of the Tjon phenome- 
non. Using the initial condition (36), one determines c2(0 ) to be 

c2(0 ) = - [ 1 5  - 3(a + [3) + a f t ] /30  (39) 

With a = 1 this reduces to c2(0 ) = (/3 - 6)/15. Thus, with 13 < 6 the high- 
energy tail of the equilibrium distribution is approached from below, 
whereas with /3 > 6 there is a crossover to an overpopulated tail which 
relaxes to equilibrium from above. The distinction is determined by the sign 
of q(0). That is, the Tjon phenomenon (when the energy is sufficiently high 
so that the Laguerre polynomials can be replaced by their leading term) is 
associated with the states of class III discussed in Section 6. 

It should be noted that the nonlinearity of the Boltzmann equation 
does not affect the two slowest terms in (37) or (38). The Tjon phenomenon 
in the final decay to equilibrium is thus contained in the linearized theory. 
So is the logarithmic dependence on energy of the characteristic time of the 
final decay. The nonlinearity does, however, play a role in determining the 
shape of the curve from, say, the crossover time on. 

8. CALCULATIONS 

From a physical point of view it is of interest to know not only the 
final asymptotics of R(c, ~-), but the complete time dependence from times 
of the order of the crossover time. In this section we shall illustrate the use 
of the recursion scheme (31) to calculate R(c,~-) with initial conditions of 
the type (36). The rate of convergence of this procedure will be discussed. 

Fourier transformation of (36) yields 

e x {( sin[(2ax) i/2] sin[(2flx) 1/2] 

+ ( X , 0 )  --  /3 __ O~ /3 --  3)  ( 2 ~ X ) 1 / 2  "l- (3 --  0/) (2 /3X)1/2  (40) 

Expansion of (40) in a Taylo r series in x gives the initial values of the 
coefficients c.(0). Calculations will be performed with (a, /3)  = (1,9) and 
(a, /3) = (3, 3). 

The recursion scheme (31) involves integrals with the complicated 
function g(~)  in the integrand. We do not have to carry out any integra- 
tions, however, since these integrals can be expressed as linear combina- 
tions of the eigenvalues A~, which have been calculated (17) with great 
accuracy up to n = 18. Use of the definition (14) shows that the symmetric 
pair of terms in the sum in (31) can be expressed as 

2qTf_:dl.s ( ~1"21"l~ )m(~_ 
(41) 

m 

1=0 
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The right-hand side of (41) could be reduced further since odd eigenvalues 
can be written as linear combinations of the preceding even ones. This is 
useful for certain checks of consistency, but not for numerical calculations. 
Introducing the dimensionless time ~- = �89 A2t and dimensionless eigenvalues 
A, = An/• 2, we arrive at the final form of the recurrence scheme (31): 

dc.('O 
+ S.c.(. 0 

(42) [./2] 
= ~ ( 1 -  1 1.z/m~x "2 ~rn'n/2) Cn-m(q')cm(q') ~ ( - - ) ~ l  ) n--m+l 

m = 2  1=0 

In (42) the symmetry of the sum in (31) has been used, and the factor with 
the Kronecker 8_,.2 prevents double counting With the S , ,  as calculated m, / 
by Alterman eta/.,  (17) given in Table I, we have solved the recursion 
scheme (42) explicitly up to n = 8. With c,0-) determined from (42), 
insertion into (33) gives the final result in the general form 

R(e,.c) = 1 + ~ c,(r)n!L(,l/2)(,) (43) 
n = 2  

We now return to a qualitative discussion of the convergence of the 
above procedure for various c and r. In principle, convergence is no 
problem, irrespective of E and z. We are, however, mostly interested in 
energies considerably larger than the thermal average 3. And we would like 
to determine R(c, r) for times down to, say, the crossover time. Large ~ and 
small ~ will require many terms in the expansion (43), and the rate of 
convergence is thus a problem in practice. 

To get a rough idea of the difficulty, replace the Laguerre polynomials 
by their leading term for high energies, and use the form (37) at r = 0. In 
that (unrealistically conservative) case, the rate of convergence is deter- 
mined by that of the Taylor expansion of ~p(-c) with ~b given by (40). For 
fl ~< 10, c ~> 20 the dominating factor in this respect is e-% The number of 

Table I. The Eigenvalues up to -~-18 According to 
Alterman et aL (17) 

n ~_,, = A , , / � 8 9  2 n A, ,  = A , , / � 8 9  2 

3 3.0 11 6.10984780 
4 3.68443307 12 6.32736687 
5 4.21108267 13 6.52944437 
6 4.64234021 14 6.71834398 
7 5.00940137 15 6.89585472 
8 5.33015367 16 7.06341604 
9 5.61583056 17 7.22220420 

10 5.87396163 18 7.37319329 
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terms N one must retain in the expansion of ~ ( - e )  is thus roughly N ~ c .  
When n ~ e ,  however, it is not a good approximation to replace n!L(,~/2~(e) 
by ( - c )  n. Use of the full Laguerre polynomials in (43) will improve 
convergence. So will inclusion of the time dependence. 

As an estimate of the latter effect, disregard the improvement caused 
by using the full n!L}l/2)(e). The ratio of the last term (in our case n = 8) to 
the second can then be estimated by using the slowest relaxation rate A 8. 
This ratio should be less than unity. A rough estimate of the time r c from 
which an eight-term approximation is satisfactory is then 

c8E 8 exp( - -~8%) 
(44) 

C2 C2 exp( - 2%) 

Initial conditions of the type (40) with (a, t 3 )= (1 ,9 )  or (3,3) give 
�9 c 8 / c 2 ~ 1 0  -5, i.e., 

%~(61nc  - 11)/3.3 (45) 

For e = 20 this estimate indicates that an eight-term approximation gives 
satisfactory results for r ~> 2. For e = 50, however, one should not expect 
convergence until r >~ 4. 

Rather than refine the above qualitative considerations, we test the 
stability of the numerical results by truncation after n = 6,7, and 8, 
respectively. The solid curves in Fig. 1 show the results for R(e, r) with 
initial condition (40), (a, B ) =  (1,9) [corresponding to c2(0 ) = 0.2], and 
energies e = 20 and e = 50. For comparison the dashed curves in Fig. 1 give 
R(c, r), truncated after n -- 8, for the same values of e, but with (a, 13) = (3, 
3) [i.e., e2(0 ) = - 0 . 2 ] ,  corresponding to all particles initially having the 
average energy 3. The solid curves exhibit the Tjon phenomenon, whereas 
the dashed curves show a behavior much closer to that of the BKW mode. 

It is interesting to compare these results with the solution of the 
corresponding linearized problem. The linearized equation can, in addition, 
be used as an indication of the rate of convergence, since the troublesome 
slowest relaxation rates are those of the linearized theory. The eigenvalues 
~*n are known accurately up to n = 18. If one wants to go beyond this, 
extrapolation is necessary. We use the asymptotic formula 

An ~---4"31nl/4 + 2.67 - 3.65n -1/4 (46) 

the form of which is taken from R.ef. 18. 
Using A 2 and the form of g(/~) as found in Ref. 19, we calculated the 

coefficient of n 1/4 in (46) by asymptotic analysis. The two remaining 
coefficients in (46) were determined by linear regression analysis based 
upon the known values of A12 to A18. In Fig. 2 the solution of the linearized 
equation, truncated after 8, 18, and 48 terms, is compared with the 
nonlinear solution, truncated after n = 8, for (a, 13) = (1, 9) and e = 20 and 
50. 
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Fig. 1. The ratio R (e, ~') given by (43) as a function of ~', according to the truncated nonlinear 
recursion scheme (42). Solid curves refer to initial condition (40) with (a, r )  = (1, 9). Curves 
1-3 show In R(20, r) truncated after n = 8, 7, and 6, respectively. Curves 4-6 show In R(50, r) 
correspondingly truncated. The dashed curves refer to an initial condition with (a, r )  = (3, 3) 
and truncation after n = 8. With curve 7, e = 20; with curve 8, c = 50. 

F igures  1 a n d  2 are in  good  a g r e e m e n t  with the es t imate  (45). F igu re  1 

d e m o n s t r a t e s  c lear ly  the sensi t ive d e p e n d e n c e  o n  $ of the  conve rgence  
proper t ies  of the r ecu r s ion  scheme.  F o r  e = 20, the ev idence  f rom the  

l inear ized  e q u a t i o n  in  Fig.  2 suggests tha t  even  d o w n  to the crossover  t ime, 
a t r u n c a t i o n  af ter  n = 8 gives resul ts  for R(e,~-) w i th in  a b o u t  10% of the  

exact  so lu t ion .  F u r t h e r m o r e ,  the l inear ized  resul ts  in  Fig.  2, t r u n c a t e d  af ter  
n = 18, are  i nd i s t i n g u i s h ab l e  f rom those t r u n c a t e d  af ter  n = 48 [with the 
ex t r apo l a t i on  (46)] for e = 20 a n d  50. This  suggests tha t  a n  ex tens ion  of the  

n o n l i n e a r  c a l cu l a t i o n  to n = 18 w o u l d  i m p r o v e  the accu racy  c o n s i d e r a b l y  
for these energies.  F ina l ly ,  Fig.  2 shows the effects of the non l inea r i t i e s  to 
be  re la t ively  smal l  in  the ent i re  t ime  r a n g e  of interest .  

A P P E N D I X  

I n  this a p p e n d i x  we show tha t  e igen func t i ons  d e c a y i n g  a sympto t i ca l l y  

wi th  a nega t ive  p o wer  of the veloci ty  are o n l y  poss ib le  wi th  Maxwe l l  

molecules .  
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Fig. 2. Comparison with the linearized theory for R(e, ~-), with (a, f l ) =  (1, 9). With curves 
1-3, �9 = 20, whereas with curves 4-6, �9 = 50. Curves 1 and 4 again give the nonlinear solutions 
for lnR(�9 truncated after n = 8. Curves 2 and 5 give the correspondingly truncated 
linearized solutions. Curves 3 and 6 give the linearized solutions with truncation after n = ! 8. 
Truncation after n = 48 gives curves indistinguishable from curves 3 and 6. 

Write for the velocity distribution and its Fourier transform 

f(v, t) = feq(V) + 8f(v, t) 
q)(k, t) = [ e x p ( -  �89 k 2) ][  1 + h(k, t ) l  (A1) 

From Eqs. (5) and (8) in Section 2, linearization in 8f yields in the spatially 
uniform case 

0h(k, t )  exP(�89 2) 
- 

~t (2,n.)3/2 

i v .  (k + kfi) - i w .  (k - ~a)I  • Iv -- wl i -4/S(exp[  -- -~ - ~-- 

- exp( - ik .  v) / (A2) 
) 
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Integration over the Maxwellians gives, for arbitrary s, 

0 h ( k , t )  _ 2 , / 2 _ 2 /  F ( 2  - 2/s) f aa,(ea)f v 6j(v) 
Ot r(3/2) 

1 k 2 - ( 1 • e x p ( - i k _ . v + - ~  )iF, - ~ +  
2 .  3 .  /)2 k ~ ]  
S ' 2 ' 2 ik+ "v+ -i--) 

1 2 3 /)2 k 2 ) 
-1Fl - 2 +  s ' 2 "  " 2 ik .v+-~-  

( i t ( 1  +exp  - i k + . v +  ~ k  2 iFl - - ~ +  
2 . 3 .  v z k__~_) 
s ' 2 ' 2 ik_ . v +  

( 1 ) ( ,  
- e x p  - i k . v +  ~ k  2 1 F I  - ~ - t -  2.3.s,2, v2)}2 (A3) 

Here F(x) is the gamma function, lFl(a; b; z) is the confluent hypergeomet- 
ric function, and k_+ = �89 ___ fi). The large-v asymptotics of the lFl in 
(A3) are given by 

( 1 2 3 v 2 ) F(3/2) (@)1 /2 -2 / ,  
I F 1  - -~  + . . . . . .  + �9 �9 �9 ~ . ,  s ' 2 ' 2 F ~  = T/s)  (14) 

Assume now that for large v, 6f(v)~ v -2e-3, where p is noninteger. This 
corresponds to a leading noninteger power k 2p for small k in h(k). The 
large-v contribution to the v integral in (A3) reads, by (A4), 

fdvv -2e-3+l-4/s { e x p ( - i k  .v + �89 2_) -  1 

1 2 + e x p ( - i k +  .v + ~ k + ) - e x p ( - i k . v  + lk2)} (A5) 

The leading noninteger power of k follows from (A5) after performance of 
the angular integral fd~ in (A3) as 

-- Ap_ 112+21s k2(p-  112+21s) (A6) 

That is, when the linearized operator acts on k 2e it generates a leading term 
of the form (A6). Thus an eigenfunction with leading noninteger power k 2p 
can only exist provided s -- 4, i.e., with Maxwell molecules. 
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NOTE ADDED IN PROOF 

The above argument seems to permit eigenfunctions with p = 3 / / 2 -  
2//s, since A 1 = 0. However, such eigenfunctions are excluded by energy 
conservation, as shown by H. Cornille and A. Gervois (to be published) for 
the special case of hard spheres (s ---> oo). 
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